
A Toolkit Approach to Sketched Diagram Recognition
Beryl Plimmer

Department of Computer Science
University of Auckland

Auckland, New Zealand
+64 9 373 7599

beryl@cs.auckland.ac.nz

Isaac Freeman
Dept of Computer Science & Software Engineering

University of Canterbury
Christchurch, New Zealand

+64 21 1511209
ijf23@student.canterbury.ac.nz

ABSTRACT
Sketch-based tools provide a more human centered design
environment than traditional widget-based computer design
software. A number of sketch tools exist that support specific
design tasks: however wider exploration of computer supported
sketching is being hampered by the effort required to build the
sketching software. Here we present a sketch tool framework,
its implementation and evaluation. The implementation, InkKit,
provides context free design spaces and a powerful, trainable
and extensible modeless writing/drawing recognition engine. It
reduces the development effort for a specific diagram type from
thousands of lines of code to a few hundred. We evaluated our
toolkit by asking fourth year computer science students to use
InkKit to develop a diagram specific recognizer.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation (e.g., HCI)]:
User Interfaces - graphical user interfaces.

General Terms
Design, Human Factors.

Keywords
Sketch tools, hand-drawn diagrams, sketch recognition, pen
computing.

1. INTRODUCTION
Designers consistently hand-draw sketchy preliminary diagrams
before preparing formal computerized designs. The benefits of
computer-based sketch tools have been demonstrated by a
number of studies [3, 26, 30]. The software tools developed for
these, and other, studies inform us about how designers can be
supported by sketch software. However, most tools have
focused on a particular domain and it is difficult to predict the
transferability of outcomes across domains and when mixing
techniques. For example, is the effect of computer
beautification (tidying) of sketched user interface designs and
directed graphs the same?

Developing a sketch tool is a non-trivial task: Freeform [30] is
12,000 lines of code. A toolkit approach should reduce the

effort required and provides a consistent platform to conduct
within-domain and across-domain inquiry. However Lank [20]
reported that his framework required 2,000 lines of code and
the diagram specific recognizers were between 2,000 and 5,500
lines each. Our framework and toolkit are more comprehensive,
and subsequently reduce the code for diagram specific
recognizers to a few hundred lines.

This work reports both a framework and toolkit for sketching.
InkKit, the toolkit is a fully featured, extensible sketch
environment that minimizes the development effort required to
support a particular type of diagram. InkKit includes a novel
two-view user interface [27] and a recognition engine that
refines existing algorithms and adds new techniques for
dividing drawing and writing ink, and recognizing complex
components [11]. The acid test for a software toolkit is the
reduction of development effort for others. Here we present an
evaluation of InkKit where 4th year students successfully wrote
diagram recognizers in just a few hours.

2. MOTIVATION
Research suggests that designers prefer to explore their design
ideas in an informal environment [26, 37] and produce better
results when their initial designs are hand-drawn [12, 28].
These studies have been conducted on quite concrete designs
such as user interfaces (UIs). There are open questions about
whether the same is true with more abstract diagrams such as
UML diagrams and electrical circuit diagrams.

In addition, there are other sketching related issues yet to be
explored. For example, many people are reluctant to share their
scribbles with a superior or client – although they will get better
feedback from a sketch [37]. Partial electronic tidying
(beautifying) of a sketch may make the designer feel better
about it; however the effect on the feedback loop is unknown.
Likewise, as educational benefits ensue from automating
(animating or executing) visual representations of algorithms,
are there benefits to be had from automating sketches? Wong
[37] suggested that there were benefits for interface design and
a number of sketch tools have supported this type of interaction:
but we are not aware of any formal studies on its effect. By
reducing the effort required to develop sketch tools these and
other issues can more easily be explored.

3. INTRODUCTORY EXAMPLE
InkKit is a fully-featured sketch toolkit based on the framework
presented later in this paper. The fundamental goal is to
minimize the effort required to support sketching a specific type
of diagram: for example user interface designs. In this section
we describe the steps required to create an InkKit plug-in
library that recognizes and transforms the multi-page sketches
shown in Figure 1 into the UIs shown below the sketches.

© Beryl Plimmer, Isaac Freeman, 2007
Published by the British Computer Society
People and Computers XXI – HCI… but not as we know it:
Proceedings of HCI 2007
Linden J. Ball, M. Angela Sasse, Corina Sas, Thomas C. Ormerod, Alan
Dix, Peter Bagnall, and Tom McEwan (Editors)

The UI plug-in library consists of: one interpreter plug-in that
tailors the recognition engine for user interface diagrams; a set
of example hand-drawn components (Figure 2): and two output
plug-ins (one each for HTML and Java). UI interpreter (class) is
320 lines of code; half is declarations of domain information
and components. For the most part this is simple ‘copy and
paste’ code that could be generated by a wizard. The remainder
interprets the output from InkKit’s imbedded recognizer (details
in Section 6.2): most components require only a few lines of
code to pass the InkKit recognized component to the data
structure for the output plug-ins. However this step allows the
programmer to add code to deal with diagram specific
functionality; for UI designs the interpreter generates data
descriptions for off-page links from buttons and drop down lists
(Figure 1).

Figure 1. InkKit UI diagrams translated to HTML and

Java.

A typical sketch recognition engine is thousands of lines of
complex code. The 320 lines of simple code in the interpreter is
all that is required to recognize 10 common UI components,
inter-sketch links, and generate a data structure for consumption
by the output generators or other plug-ins. A small number (2-
5) of hand-drawn examples (Figure 2) of each component are
also required. We stress that no complex recognition rules need
to be written.

We have implemented two output plug-ins for the UI domain,
HTML and Java forms. Each takes the same data structure from
the interpreter; they are each approximately 500 lines of code.
The plug-in programmer is presented with a collection of
‘interpreted page’ objects. It is straightforward to parse this
collection and from it generate the UI, mainly generating the
different component types and converting size and position
data. Other attributes may be transferred (such as containment)
depending on the particular requirements of the language. The
HTML is immediately executable, including inter-page links,

while the Java code is ready to compile. We have also
implemented plug-ins for organization charts, undirected and
directed graphs as examples of diagrams that have connected
components based on spatial position, edges and directed arcs
respectively [11]. Students created five further sets of plug-ins
(see Section 7).

Figure 2. InkKit domain library UI showing example shapes.

4. REVIEW OF EXISTING TOOLS
To define a framework for sketch tools we examined a range of
sketch tools to identify the generic functionality required. The
framework focuses on the designer’s interaction requirements
and generalizing sketch recognition (the most difficult technical
challenge for sketch tools). We used this framework to guide
the development of InkKit.

Most of the sketch tools that have been developed support
diagrams associated with Computer Science. Many are for UI
design, for example Silk [19], Denim [22], Freeform [29], and
Demais [3] or for UML diagramming Knight [7], Sumlow [5].
Architecture has also attracted interest [9, 35]. Satin[15] is an
earlier sketch toolkit; the user interface is a single large drawing
canvas and it includes a range of useful routines for the
manipulation and recognition of drawing ink. It has been used
successfully by Landay’s group to explore sketching support.
However, it does not include character recognition and is a
programmer’s library rather than an extensible environment. A
number of other sketch toolkits or frameworks have been
proposed. SketchREAD [1] is an innovative approach using
Bayesian networks to recognize sketches; however it does not
appear to support text on the diagrams. It requires the user to
describe the diagram components with complex rules, whereas
InkKit builds the rules from user examples. Likewise
SketchiXML [6] defines a general purpose description language
for sketches to support cross-platform implementations but
neglects the recognition of text. Our work is most similar to
Lank’s [20] retargetable framework. While Lank’s framework,
like InkKit, recognizes text and drawing components, the
amount and complexity of code needed to implement a domain
extension is very high, leading Lank to question the viability of
a framework approach.

From the literature on these tools we identify the functionality
supported (Table 1). The common feature of all of these tools,
not surprisingly, is a drawing space. There are two approaches
to this: multiple pages and a storyboard, or one large space
where navigation is aided by zooming or a radar window. Other
common features are recognition to enable conversion from
sketch to a formal design environment and automation.

Table 1. A summary of current sketch tools.
To

ol

D
om

ai
n

Sk
et

ch
 p

ag
es

St
or

yb
oa

rd

R
ec

og
ni

tio
n

A
ni

m
at

io
n

Ex
po

rt

Animated Figures [8] Animation X X Isomorphic mapping X
Damask [21] UI Patterns X X
Demais [3] Multi-Media UI X X X
Denim [22] UI X zoom Rubine’s [32] X

The Electronic Cocktail
Napkin [9]

Architecture X X

FreeForm [29] UI X X Rubine’s [32]+ character X X
Freeform UIs [16] UI
Knight [7] UML Diagrams X radar Rubine’s[32] X
MathPad2 [17] Maths X X Draw & write X
Monet [38] UI X X X
Motion Doodles [34] Animation X
Silk [19] UI X X Rubine’s [32] X

Sim-u-sketch [18] Sim-u-link X Shapes and digits
SketchiiXML[6] UI Design X Cali [10]
STCtools [25] Device Design X X
Sumlow [5] UML X Apte [2] & Rubine’s [32]
Tahuti [13] UML X Multi layer framework
Retargetable Framework [20] UML, maths

formula, molecular
diagrams

X Multi step, includes character

Sketch recognition is technically challenging. Many of the tools
have used Rubine’s [32] algorithm. This is a single stroke
pattern matching algorithm that is simple to implement and
train from examples. A range of other recognition techniques
have been explored: for example, Ladder [14] proposes a
general method for diagram recognition and Cali [10] has two
versions, a non-trainable fuzzy-logic recognizer and a trainable
Naïve Bayes algorithm. Shilman and Viola [33], suggest
techniques for grouping ink. Few of these tools recognize hand-
writing and drawing. Freeform [29] implemented modal
drawing/writing interaction. Lank’s [20] tool incorporates
publicly available character recognition, while Math Pad2 [17]
includes limited drawing and writing recognition. Others have
either ignored word input or support keyboard text entry. We
contend that most non-trivial diagrams require words as an
essential part of the description and it is distracting for the user
to move between pen and keyboard. This suggests that a sketch
recognition engine must be capable of recognizing diagrams
containing both words and shapes.

There have been a number of studies on the efficacy of
computer support for sketching [3, 30, 36] for UI design. These
studies suggest that computer-based sketch tools do not disrupt
the design process in the same way as standard computer design
environments have been shown to [12]. However there is little
evidence from other domains. Likewise automation (animation
and execution) of sketched designs offers exciting prospects. A
number of the current tools have explored this: for example,

sketched UIs where the controls behave appropriately [19, 21]
and animation of sketches [8, 31, 38].

Sketch tools present unique usability issues. Mankoff et al. [23]
have looked extensively at user support for recognition
correction – an important area as it will be some time (if ever)
before consistently correct sketch recognition is achievable. We
have recently reported on our usability testing of InkKit [27].

5. FRAMEWORK
We can discern from Table 1 that there is a core set of
functional requirements for sketch tools. The key components
are the UI and recognition engine. Support for normal
functionality such as data storage and retrieval is assumed.

The user interface: two approaches to a user interface are
apparent in the literature, a single large view or a two-view
interface. A virtual page can be very large, yet display space is
finite so large pages require support such as zooming or
navigation aids like radar windows.

Two-view interfaces typically provide a place where a
collection of sketch pages can be displayed and associations
established between the pages. Many of the existing sketch
tools refer to this as a storyboard, a term used by graphic
designers. It suggests a linear arrangement of the sketches.
Alternative arrangements could be a hierarchy or network
where the relationships between pages may depend on their
relative positions or explicit connectors. The semantics of page

position and connectors is domain dependent, therefore not a
part of the core functionality.

Regardless of size, sketch pages provide a place where users
can draw and write with a pen much as they would on paper,
with support for usual computer editing such as cut, copy, paste
and undo. It is a moot question as to whether functional editing
gestures (e.g., scribble over to delete) should be supported. Our
experience is that when functional gestures work they are
excellent, but when they fail users get very frustrated. Standard
paper backgrounds such as grids and lines have been
implemented by some tools and are likely to be useful. We
envisage a range of standard backgrounds and the ability for
users to create their own custom backgrounds. The position of
background elements may be of interest to the recognition
engine for particular diagram types.

The recognition engine: in a computer-supported environment a
recognized sketch is more useful than an unrecognized sketch.
Recognition is essential for more sophisticated support, it
facilitates automatic conversion of sketches to formal diagrams
and the automation of sketches, something that is not possible
with paper equivalents [8, 19, 21, 31, 38].

A natural sketching environment consists of both words and
characters; the recognition engine must manage this. To
identify a structure for sketch recognition, consider the sketched
diagrams in this paper, each of which has been constructed
from individual ink strokes. Each stroke contributed to either a
symbol or word. The meaning of the stroke is dependent on its
shape and relationship with other strokes both spatially and
within the context of the particular domain.

We can identify common properties of the ink. First, there is a
distinct semantic difference between letter strokes that
contribute to words and drawing strokes that contribute to
symbols. Second, basic shapes, such as rectangles, are often
meaningful on their own; however, frequently their meaning is
derived from a particular spatial arrangement with other shapes
either to form a more complex symbol or a relationship with
another symbol. For example, a rectangle as a part of a standard
UI, by itself represents an edit box, but with a triangle inside, it
represents a dropdown. Third, connectors are common in
diagrams: they represent relationships between elements.

Although there is a clear divide between the meaning of letter
strokes and drawing strokes, we are accustomed to interleaving
drawing and writing on paper and must be able to do the same
with a computer sketch tool. To achieve smooth user-
interaction, yet successfully recognize diagrams, we propose
the following architecture for a recognition engine.

• First, classify the strokes as either writing or drawing
strokes.

• Second, identify basic shapes such as lines, rectangles,
and circles. Group the letters into words and recognize the
words.

• Third, identify meaningful diagram components.

• Last, identify the relationships between components.

The first two recognition steps are independent of domain. The
third and fourth steps are dependent on diagram type. However,
diagram syntactic and semantic rules mean that the elements of
a component have a discoverable relationship with sibling
elements and the component. Consider the representations of a
scroll bar in Figure 3.

Figure 3. Component visualization.

If (a) is the defined representation, then (b) contains the same
elements in a different spatial arrangement, whereas (c) has
different elements but in the same spatial arrangement. To
humans (c) is a closer match: unless (c) was itself a component
they would classify it as a component of type (a) whereas they
would be unlikely to classify (b) as type (a). Using these ideas,
and identifying appropriate features, example-based component
recognition can be achieved.

Other functionality of sketch tools is dependent on domain.
Domain extensibility should include the ability to define: sketch
page backgrounds, additional semantic rules to aid recognition,
semantic rules defining relationships between sketches, the
ability to generate data from a recognized sketch in a suitable
format for other computer based tools such as diagram editors
or programming IDEs, extensibility for interaction with the
sketch for automation

6. OUR APPROACH
We have used this framework to built InkKit. To optimize
adaptability and extensibility we have employed a component
based architecture and implemented plug-in functionality. It has
been developed for the Microsoft Tablet OS in Visual Studio
.Net using C#. This has the advantages of providing a good
hardware platform and the Ink SDK for basic ink data support
and character recognition, but it restricts InkKit’s use to the
chosen operating system and hardware.

Figure 4. InkKit architecture.

Figure 4 is an abstract representation of the InkKit architecture.
Below we briefly describe the major components of this: the

Drawing
Platform

InkKit Architecture
 Sketching

Portfolio Object

Persistence

Division

Recognition

Basic Shape
Recognition

Component
Recognition

Interpreter Example

Components

Output
Module

Output
Module

Domain 1

...

.

Interpreter Example

Components

Output
Module

Output
Module

Domain 2

...

.

...

.

user interface, recognition engine and extensibility for domain
specific functionality.

6.1 User Interface
InkKit contains two main user interfaces: sketch pages and a
portfolio manager. To maximize viewable space InkKit can be
used with an auxiliary monitor (Figure 5). In this mode the
portfolio manager resides on any standard output monitor and
the sketch pages reside on the tablet (which accepts stylus
input).

Figure 5. InkKit user interface.

To engender the feeling of working on paper the sketch pages
are deliberately minimalist in appearance. Users can ink, erase,
undo, redo and, edit by first selecting ink, and then resize, cut,
copy and paste. Page size can be reduced or enlarged by
dragging the sides or corners of the window. If reduction hides
ink the virtual page is the minimum size to accommodate the
ink and scroll bars are added to the page. Pages can be zoomed
from a drop-down list.

The metaphor for the portfolio manager is that of spreading
pages around a desk. Pages can be moved around the space and
resized: resizing automatically zooms the page content to the
available space. Links can be created between the pages

The user interface has been thoroughly usability tested (see
[27]). The behaviour of the two visualizations (sketch pages and
portfolio manager) was carefully tested. This resulted in sketch
pages that are editable only in sketch-page view (not portfolio
view) and the resizing of sketch pages acting differently in each
view (resizing the sketch page, but zooming the sketch in
portfolio view). Also we verified that the terminology used on
the interface is understood across domains.

6.2 Recognition Engine
Our goal with the recognition engine is to be able to recognize
forms and abstract diagrams containing shapes and words from
user examples. From the architecture described above we
developed a modular approach to the recognition (Figure 6).
Much of the recognition is an implementation of well known
techniques; however, the divider and component recognition are
novel approaches to these problems.

Divider: The Tablet OS includes both a text recognizer and
stroke divider. The text recognizer produces good results. We
tested the divider on a variety of typical diagrams; 68% of
drawing strokes were classified as text while 6% of letter
strokes were classified as drawing. Given the nature of
diagrams this error rate is unacceptable.

Analysis of sample text and drawing strokes identified features
that we could use in conjunction with probabilities returned by
the OS divider. Our divider first analyzes each stroke, assigning
it a probability of being a letter, and then combines the
probabilities of horizontally adjacent strokes. We reject text that
is less than two letters in length so that simple shapes like
circles are recognized (this can be overridden by the domain
plug-ins). Using this approach we were able to achieve a much
lower rate of false text (4%), while maintaining a low rate of
false drawing strokes (10%). Strokes identified as text are
passed to the OS for recognition.

Figure 6. Recognition engine architecture.

Shape Recognition: The remaining strokes are drawing ink.
Most diagrams consist of a small set of basic shapes that are
simple outlines such as rectangles, triangles, circles and the
like. Most of these can be drawn with one continuous pen
stroke. A number of sketch tools (see Table 1) have used this
characteristic and implemented Rubine’s [32] algorithm for
stroke recognition. Its attractiveness is the simplicity of
implementation and that it is example driven.

After implementing Rubine’s algorithm we identified three
limitations to its use. First, it only caters for shapes created in
one continuous stroke. Second, some of the features are tied to
the absolute size of the shape. Third, the recognition, while
good, was not accurate enough for our purposes.

Joiner: It is not always natural to draw a basic shape with a
single stroke. Two approaches can be taken to this problem.
Complex lines can be broken into component lines [4], or else
component lines can be joined to form a single line. For
example, a square could be divided into four straight lines, or
the separate lines could be joined to form a square. We chose
the latter approach joining adjacent successive strokes that do
not already form a closed shape (such as a rectangle or
triangle). Before joining, the recognizer’s copy of strokes are
rotated and trimmed to ensure a continuous smooth flow of
points, but the user’s view is left unaltered.

Basic Shapes: Solutions for the latter two problems (recognition
dependent on size and higher accuracy) were produced by
modifying the features used to classify shapes. We removed
classification features that involved absolute size values, and
inserted ratios in their place. As an example, width and height
features were replaced by the ratio between the width and
height. We also included features identified by other research
[10] in relation to the convex hull and smallest enclosing
rectangle. Ratios between the perimeters and areas of these
shapes are useful because they ignore orientation issues. As an
example, regardless of orientation, the ratio between the areas
of the convex hull and enclosing rectangle is 1 for a square,
0.78 for a circle and 0.5 for a triangle.

Informal comparison testing between Rubine’s algorithm and
our enhanced algorithm on the same training and test sets from

Divider

Tablet OS’s Recognition Engine

Basic Shape
Recognition

Component

Recognition

Component
examples

Domain specific

Domain independent

Com
ponents

Joiner
Strokes

four users increased recognition rates from 44% to 92%. In
addition, our approach offers more flexibility as users can
construct their basic shapes with multiple strokes.

Components: At this point all of the strokes in a diagram have
been identified as either text or a basic shape. The next stage is
to recognize the diagram components; that is meaningful parts
of the diagram that consist of one or more elements (shapes and
words). Now information on the rules for the diagram domain is
needed. User examples are used to extract these rules (Note: No
domain specific code need be written for component
recognition).

Each domain library is a collection of example components
(Figure 2); the goal is to classify each part of the diagram as a
component from the library. The component classification
algorithm begins by constructing a graph of spatially related
elements. From this graph element combinations are identified
and evaluated against the domain library to produce the
probability of the combination belonging to a particular
component class.

This probability is computed using three sets of features. First,
we calculate the probability of sibling relationships between
each pair of elements existing in the component class examples.
Features between the elements (enclosing, enclosed, near or
intersecting) and their relative positions and orientation
(centres, heights, widths and centre in relation to height) are
used for this calculation. These probabilities are carried through
to the next step.

Second, we compute the probability of each element existing as
a part of each possible component type. This is done by
combining the already computed probability of that element’s
sibling relationships, the shape of the element and the element’s
spatial position within the combination of elements.

Third, we compute probability tables of complete combinations
in a similar manner to that used to classify basic shapes.
Features used include properties of the bounding box of the
combination and the density of shapes within it. Probabilities
from these three sets of features are combined to produce a
resultant probability of each element combination belonging to
a specific component class.

Finally the graph is recursively searched for the most probable
component matches, progressively assigning elements to

components. As an element or set of elements is assigned to a
component they are removed from the graph. Recognition of UI
diagrams in our informal evaluation achieved a 95% success
rate. We comment on the success of the recognition of other
types of diagrams in the evaluation and discussion sections.

6.3 Extensibility
Extensibility is achieved through plug-in libraries that hold
domain specific information: the example in Section 3 is such a
library. A library has two or more parts, an interpreter that can
extend the sketch recognition, output plug-ins that generate
export data in appropriate formats and automation or other
extensions. A domain can be added to InkKit by placing a
library DLL into the InkKit program directory and then adding
sketch examples of the components to the domain via the
InkKit library interface (Figure 2).

The interpreter consists of basic information about the domain
(such as whether the diagrams contain words and connectors)
and a list of component names and descriptions. Through the
interpreter, recognition can be enhanced by adding domain
specific rules.

The output modules produce data in specific formats for other
tools using the components identified by the interpreter. Each
component has attributes that include recognition results, the
raw ink, positional information, and connections with other
components on the same page or other pages. The output
module can apply additional rules depending on the output data
requirements. Other extensions, for example for automation can
also be added to the domain library.

7. EVALUATION STUDY
To evaluate InkKit, five 4th year computer science students
each implemented a plug-in library as a part of an advanced
HCI course. We suggested that 20 hours of work was the
maximum that they should dedicate to the project. Each
selected a different type of diagram and wrote both and
interpreter and output class. We discussed with them the
rationale behind InkKit and gave them a half hour overview on
the software interface (API) for plug-ins. The resources they
were given were: a compiled copied of InkKit (they had no
access to the base code), three sample plug-ins (UI, hierarchy
charts and graphs) and a brief written description of the API.

Table 2. Student libraries for InkKit.

Domain Interpreter To Output

 Code
Lines

Number of
Procedures

Maximum
Complexity

 Code Lines Number of
Procedures

Maximum
Complexity

Venn Diagram 102 2 2 Powerpoint 293 3 5

UML Class
Diagram

264 4 12 Java 830 5 16

UML Activity
Diagram

281 3 11 Visio

Hierarchical
Visual Model

275 2 5 HTML 255 3 6

Music 459 4 23 Lilypond 510 4 21

Figure 7. Student sketches and formal output.

They implemented a range of different types of diagrams (Table
2). One student chose music notation – he is also a music major
(we added a simple music staff wallpaper to the sketch page for
him). All students implemented a satisfactory interpreter and
four implemented a satisfactory output module. The fifth was
attempting to export to Microsoft Visio – he did manage to
make drawing objects in Visio but could not arrange them
correctly. Table 2 shows the lines of code and Cyclomatic
Complexity [24] (<10 is simple, 11-20 more complex, 21-50
very complex, >50 untestable) required achieving the plug-ins.
This is the code exactly as they submitted it without any
optimization by us. The UML class diagrams and music are the
most complex and these were created by the most conscientious
students. Figure 7 is a selection of screen shots of the various
diagrams taken directly from the students’ presentations.

While all the students managed to recognize diagrams of their
chosen domain, the accuracy varied from excellent for the Venn
diagrams to nearly always needing manual correction for the
Activity diagrams. The music scoring was limited to a small
subset of the main music symbols that lay within the staff, not
enough for any real music, however better than we had
anticipated as musical notes are more closely related to writing
than diagram components (on the example one of the notes is
an octave out – a small ‘bug’ the student assured us).

From the students’ plug-ins we identified that attaching a label
(word) to an adjacent component was common across nearly all
of the interpreters; we have since incorporated this functionality
into the core recognizer. We also decided to examine more
closely the syntactic and semantic rules around connectors as
these are common to many diagrams. We have subsequently
implemented identification of connectors and connection points
into the recognizer and rewritten the graph interpreter reducing
the lines of code required from 250 to 180 [11].

8. DISCUSSION AND FUTURE WORK
Hand sketching initial designs is a standard approach across a
wide range of disciplines. The current range of computer-based
sketch tools suggests that computer environments can emulate
this by providing an ink-enabled interface for the sketch
creation. Two methods of providing large spaces have been
explored: a large space with navigation aids, or multiple spaces
and a storyboard.

Our approach with InkKit is to provide a well-tested, easy to
use interface that consists of two parts: variable sized, zoomable
sketch pages; and a portfolio view where pages can be freely
positioned and connections made between pages.

For computer-based sketch tools to be significantly more useful
than pen and paper they must provide computational support

that paper cannot. From Table 1 we can see that some of the
areas under investigation are automatic conversion from sketch
to formal diagram, and supporting automation; this requires a
recognized sketch and knowledge of the underlying semantics.

Computer-based recognition of a sketch, particularly one that
contains both drawing and writing elements, is difficult. Given
the quite small set of basic elements from which most diagrams
are constructed, and the spatial relationships between these
elements, a general approach to recognition such as we have
implement in InkKit is possible. Without regard for domain, ink
is divided into writing or drawing strokes. Writing strokes are
recognized by a text recognizer. Drawing strokes are joined to
form basic shapes that are recognized by our enhanced version
of Rubine’s [32] algorithm, thus overcoming the main
weakness of this algorithm.

Domain specific information is required to compose
components from the words and basic shapes. In InkKit we do
this from user examples, extracting from these examples the
basic elements and their spatial relationships. Further, more
specific, knowledge is required to convert a sketch to a formal
representation or automate it. InkKit makes available the
recognition information via an API so that these next stages are
easy to program.

Robust recognition is essential and we are certain that further
advances will be made. The component architecture of InkKit’s
recognition engine is such that alternative approaches can be
evaluated against a variety of domains and as improvements are
identified components can be replaced. However, InkKit is
already more advanced in this respect than other tools in that it
offers modeless writing and drawing and example driven
recognition.

Students implemented a number of libraries to evaluate InkKit.
Their success demonstrates the viability of a toolkit approach to
sketching tools. InkKit has successfully handled a range of
domain independent and domain specific issues.

Further work is needed to explore other sketch-tool related
issues such as: eager versus lazy recognition, the timing and
effect of beautification, and the effect of sketch automation. A
toolkit approach means that robust comparative studies can be
undertaken isolating the particular variables of interest.

9. CONCLUSIONS
The framework defined here has been demonstrated with the
implementation of InkKit. InkKit provides the essential
functionality required for sketching and has been successfully
used to implement diagram recognizers in eight domains, and
these diagrams have been converted into nine different formats.
The skill and knowledge required to implement a plug-in is
only that which we would expect from a graduate computer
science student. In addition, the quantity of code and time is
minimal. This general approach to sketch tools affords more
robust evaluation and exploration of computer supported
sketching.

This framework and InkKit open the way for more rapid
exploration of computer-supported sketching and computational
support of sketches such as animations, simulations and
execution.

A copy of InkKit can be obtained by emailing the first author.

10. ACKNOWLEDGMENTS
We would like to acknowledge the contributions of Ronald
Chung, Peter Mirica, Mark Young and Gene Tang who have

worked on various previous versions of InkKit. Also the
students who developed the plug-ins for InkKit for their
enthusiasm and helpful feedback on the project.

11. REFERENCES
[1] Alvarado, C., and Davis. R.. SketchREAD: A multi-

domain sketch recognition engine. In Proceedings of the
17th annual ACM symposium on User interface software
and technology (UIST 2004). ACM Press, New York,
NY, 2004, 23-32.

[2] Apte, A., Vo, V., and Kimura, T. D. Recognizing
multistroke geometric shapes: An experimental
evaluation. In Proceedings of the 6th annual ACM
symposium on User interface software and technology
(UIST 1993). ACM Press, New York, NY, 1993, 121-
128.

[3] Bailey, B. P., and Konstan, J. A. Are informal tools
better? Comparing DEMAIS, pencil and paper, and
Authorware for early multimedia design. In Proceedings
of the SIGCHI conference on Human factors in
computing systems (CHI 2003). ACM Press, New York,
NY, 2003, 313-320.

[4] Calhoun, C., Stahovich, T. F., Kurtoglu, T., and Kara, L.
B. Recognizing multi-stroke symbols. In Proceedings of
the AAAI spring symposium on sketch understanding.
2002.

[5] Chen, Q., Grundy, J., and Hosking, J. An E-whiteboard
application to support early design-stage sketching of
UML diagrams. In Proceedings of the IEEE symposium
on Human centric computer languages and environments.
IEEE Computer Society, Washington, DC, 2003, 219-
226.

[6] Coyette, A., Faulkner, S., Kolp, M., Limbourg, Q., and
Vanderdonkt, J. SketchiXML: Towards a multi-agent
design tool for sketching user interfaces based on
USIXML. In Proceedings of the 3rd annual conference
on Task models and diagrams (TAMODIA 2004). ACM
Press, New York, NY, 2004, 75-82.

 [7] Damm, C. H., Hansen, K. M., and Thomsen, M. Tool
support for cooperative object-oriented design: Gesture
based modelling on and electronic whiteboard. In
Proceedings of the SIGCHI conference on Human factors
in computing systems (CHI 2000). ACM Press, New
York, NY, 2000, 518-525.

[8] Davis, J., Agrawala, M., Chuang, E., Popovic, Z., and
Salesin, D. A sketching interface for articulated figure
animation. In Proceedings of the 2003 Eurographics/
SIGGRAPH symposium on Computer animation.
Eurographics Association, Aire-la-Ville, Switzerland,
2003, 320-328.

[9] Do, E. Y. L., and Gross, M. Thinking with diagrams in
architectural design. Artificial Intelligence Review, 15,
(2001), 135-149.

[10] Fonseca, M. J., Pimentel, C., and Jorge, J. A. CALI: An
online scribble recognizer for calligraphic interfaces. In
Proceedings of the AAAI spring symposium on Sketch
understanding. 2002.

 [11] Freeman, I., and Plimmer, B. Connector semantics for
sketched diagram recognition. In AUIC 2007. (Ballarat,
Australia, 2007). ACM Press, New York, NY, 2007.

[12] Goel, V. Sketches of Thought. MIT Press, Cambridge,
MA, 1995.

[13] Hammond, T., and Davis., R. Tahuti: A geometrical
sketch recognition system for UML class diagrams. In
Proceedings of the 2002 AAAI spring symposium on
Sketch understanding. 2002.

[14] Hammond, T., and Davis, R. LADDER: A language to
describe drawing, display, and editing in sketch
recognition. In Proceedings of the international
conference on Computer graphics and interactive
techniques. ACM Press, New York, NY, 2003, Article
No. 27.

[15] Hong, J. I., and Landay, J. A. SATIN: A toolkit for
informal ink-based applications. In Proceedings of the
13th annual ACM symposium on User interface software
and technology. ACM Press, New York, NY, 2000, 63-
72.

[16] Igarashi, T. Freeform user interfaces for graphical
computing. In Proceedings of the 3rd International
Symposium on Smart Graphics. Springer, Heidelberg.
2003.

[17] Joseph J., LaViola Jr., J. J., and Robert, C. Z. MathPad2:
A system for the creation and exploration of mathematical
sketches. ACM Transactions on Graphics, 23, 3 (2004),
432-440.

[18] Kara, L. B., and Stahovich, T. F. Sim-U-Sketch: A
sketch-based interface for SimuLink. In Proceedings of
the working conference on Advanced visual interfaces.
ACM Press, New York, NY, 2004, 354-357.

[19] Landay, J., and Myers, B. Sketching storyboards to
illustrate interface behaviors. In CHI 1996: Conference
companion of the SIGCHI conference on Human factors
in computing systems. ACM Press, New York, NY, 1996,
193-194.

[20] Lank, E. H. A retargetable framework for interactive
diagram recognition. In Proceedings of the seventh
international conference on Document analysis and
recognition (ICDAR 2003). IEEE, 185-189.

[21] Lin, J., and Landay, J. A. Damask: A tool for early-stage
design and prototyping of cross-device user interfaces. In
CHI 2003 workshop on HCI Patterns: Concepts and
Tools. (Fort Lauderdale, Florida, 2003).

[22] Lin, J., Newman, M. W., et al. Denim: Finding a tighter
fit between tools and practice for web design. In
Proceedings of the SIGCHI conference on Human factors
in computing systems (CHI 2000). ACM Press, New
York, NY, 2000, 510-517.

[23] Mankoff, J., Hudson, S. E., and Abowd, G. D. Providing
integrated toolkit-level support for ambiguity in
recognition-based interfaces. In Proceedings of the
SIGCHI conference on Human factors in computing
systems (CHI 2000). ACM Press, New York, NY, 2000,
368-375.

[24] McCabe, T. J., and Watson, A. H. Software complexity.
Crosstalk, Journal of Defense Software Engineering, 7,
12 (1994), 5-9.

[25] Nam, T. -J. Sketch-based rapid prototyping platform for
hardware-software integrated interactive products. In CHI

2005: Conference companion of the SIGCHI conference
on Human factors in computing systems. ACM Press,
New York, NY, 2005, 1689-1692.

[26] Newman, M. W., Lin, J., et al. DENIM: An informal web
site design tool inspired by observations of practice.
Human-Computer Interaction, 18, 3 (2003), 259-324.

[27] Plimmer, B., Tang, G., and Young, M. Sketch tool
usability: Allowing the user to disengage. In People and
Computers XX (Proceedings of HCI 2006). Springer,
London, 2006.

[28] Plimmer, B. E., and Apperley, M. Evaluating a sketch
environment for novice programmers. In CHI 2003:
Extended abstracts of the SIGCHI conference on Human
factors in computing systems. ACM Press, New York,
NY, 2003, 1018-1019.

[29] Plimmer, B. E., and Apperley M. Software for students to
sketch interface designs. In Proceedings of the IFIP
conference on Human-computer interaction (INTERACT
2003). IOS Press, 73-80.

[30] Plimmer, B. E., and Apperley M. INTERACTING with
sketched interface designs: an evaluation study. In CHI
2004: Extended abstracts of the SIGCHI conference on
Human factors in computing systems. ACM Press, New
York, NY, 2004, 1337-1340.

[31] Rogers, W. J. Living Ink: Implementation of a prototype
sketching language for real time authoring of animated
line drawings. In Proceedings of the Eurographics
workshop on Sketch-based interfaces and modeling.
Eurographics Association, 2006.

[32] Rubine, D. Specifying gestures by example. ACM
SIGGRAPH Computer Graphics, 25, 4 (1991), 329-337.

[33] Shilman, M., and Viola, P. Spatial recognition and
grouping of text and graphics. In Proceedings of the
Eurographics workshop on Sketch-based interfaces and
modeling. Eurographics Association, 2004.

[34] Thorne, M., Burke, D., and Panne, M. v. d. Motion
doodles: An interface for sketching character motion.
ACM Transaction on Graphics, 23, 3 (2004), 424-431.

[35] Trinder, M. The computer's role in sketch design: A
transparent sketching medium. In Computers and
building: CAAD futures 99. Kluwer, Atlanta, 1999.

[36] Walker, M., Takayama, L., and Landay, J. A. High-
fidelity or low-fidelity, paper or computer medium? In
Proceedings of the Human factors and ergonomics society
46th annual conference. (Baltimore, 2000).

[37] Wong, Y. Y. Rough and ready prototypes: Lessons from
graphic design. In CHI 1992: Posters and short talks at
the SIGCHI conference on Human factors in computing
systems. ACM Press, New York, NY, 1992, 83-84.

[38] Yang, L., and James, A. L. Informal prototyping of
continuous graphical interactions by demonstration. In
Proceedings of the 18th annual ACM symposium on User
interface software and technology. ACM Press, New
York, NY, 2005, 221-230.

